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Abstract

This research proposes a new Public Key Distribution Protocol for two goals: secure
against an active adversary, and capable for key authentication. This protocol which is
based on Diffie-Hellman Problem is a two-pass protocol and has many of desirable security.
The protocol establishes a shared secret key K between two entities. The protocol is an
extension of Diffie-Hellman Key Exchange using random numbers. This research also
follows up MTI which is grounded in the two-pass key agreement. Generally, the research
will focus on the developing of a protocol by which users can authenticate each other in
an insecure network without central authority.
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Chapter 1

Introduction

Cryptography has a long and fascinating history. The most striking development in
the history of cryptography came in 1976 when Diffie and Hellman published ”New
Directions in Cryptography ”[14]. This paper introduced the revolutionary concept of
public-key cryptography and also provided a new and ingenious method for key exchange,
the security of which is based on the intractability of the discrete logarithm problem and it
is a commonly used protocol for key exchange. Later several public cryptosystems followed
using many different underlying ideas. Many of them were soon proven to be insecure.
However, the Diffie-Hellman protocol appears to has remained one of the strongest up to
now.

Diffie-Hellman key exchange algorithm, is based on the assumption that discrete log-
arithms are hard to compute. This intractability hypothesis is also the foundation for
the presumed security of a variety of other public key schemes. While there have been
substantial advances in discrete log algorithms in the last two decades, in general the
discrete log still appears to be hard. Unfortunately no proofs of hardness are available in
this area, so it is necessary to rely on experience and intuition in judging what parameters
to use for cryptosystems.

In many cryptographical protocols two parties wish to begin communicating. However,
assume they do not initially possess any common secret key and thus cannot use secret key
cryptosystems. The key exchange by Diffie-Hellman protocol remedies this situation by
allowing the construction of a common secret key over an insecure communication channel.
It is based on a problem related to discrete logarithms, namely the Diffie-Hellman problem.
This problem is considered to be hard, and it is in some instances as hard as the discrete
logarithm problem. The Diffie-Hellman protocol is generally considered to be secure when
an appropriate mathematical group is used. In particular, the generator element used in
the exponentiations should have a large period.

The objective of a key distribution or key agreement protocol is that, at the end of the
protocol, the two parties involved both have possession of the same key K, and the value
of K is not known to any other party. Certainly it is much more difficult to design a
protocol providing this type of security.

Attacks against Diffie-Hellman include the man-in-the-middle attack. It is in prac-
tice very easy if the protocol doesn’t use countermeasures such as authentication. Since
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the network is insecure of n users, we need to protect against potential opponents (also
called adversary, intruder, enemy, attacker, eavesdropper, and impersonator under vari-
ous circumstances). An opponent might be a passive adversary who attempts to defeat
a cryptographic technique by simply recording data and thereafter analyzing through a
passive attack. On the other hand, an active attack involves an active adversary who
modifies or injects messages. An active adversary can do various types of nasty things
such as the following

1. alter messages that he observes being transmitted over the network.

2. save messages for reuse at a later time

3. attempt to masquerade as various users in the network

The objective of an active adversary might be one of the following :

1. to fool the users into accepting an ”invalid ” key as valid

2. to make the users believe that they have exchanged a key with each other when
they have not.

1.1 Goals of the Research

In most of the Key-Exchange Algorithms a trusted authority is responsible for verifying
the identities of users, choosing and transmitting keys to users, etc. This is something that
this research follows to avoid it. Because there are cases that users want to communicate
directly.

As a fundamental goal, the objective of this research is on developing a secure key
distribution protocol aiming at achieving the following goals :

1. secure against the man-in-the-middle attack

2. security based on intractability of Diffie-Hellman problem

3. capable to key authentication, to provide assurance for the recipient whether he or
she has computed the valid key

This research will focus on the development of a protocol by which users can authenti-
cate each other in an insecure network without a central authority. Using such a protocol,
users will be able to correctly identify the origin of a message, with an assurance that the
identity is not false.
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1.2 Related Works

There are many algorithms based on the intractablility of the Discrete Logarithm Problem
which most of them are secure against a passive attack, but insecure against the man-in-
the-middle attack which some of them will be discussed in this research.

Yamamoto and Akiyama proposed a protocol called Method 1 of key agreement proto-
col[8, p178] which is an extension to Diffie-Hellman protocol using random numbers for
session keys. This work is secure against a passive attack but it has problems with the
man-in-the-middle attack.

There is another work by Okamoto and Nakamura proposing Method 2 [8, p179] of
key agreement protocol using random numbers for session keys in a different way than
Method 1. The security of this work is almost the same as Method 1.

Matsumoto, Takashima and Imai have constructed several interesting key agreement
protocols by modifying Diffie-Hellman key Exchange. These protocols are classified to
MTI[19] key agreement protocols. We present some of these protocols and consider the
man-in-middle attack about one of them to show how an active adversary can fool the
users into accepting an ”invalid ” key as valid.

Elgamal protocol is another work which is much different from the methods mentioned
above. This one-pass protocol gives authentication but it is not secure against the man-
in-the-middle attack.

Authentication is a second problem with these protocls. They are unauthenticated
protocols which users cannot assure whether they have generated the correct key. In some
of the protocols like ElGamal or one-pass protocols the recipient has no corroboration of
whom it shared the secret key with, nor any key freshness assurances. Neither party
obtains entity authentication or key confirmation.

1.3 Outline of the Research

This research is organized into 5 chapters. Chapter 1 gives an intoduction to historical
background of Diffie-Hellman Key Exchange as well as related works. Chapter 2 presents
a mathematical background of the basics needed to understand the Diffie-Hellman based
on protocols and the types of attacks it is vulnerable to. Diffie-Hellman based on protocols
require knowledge of several areas of mathematics, including number theory, groups, rings
and fields. It has been tried to focus on the most important and neccessary definitions
and theorems which are needed to understand this research. Of course, no proof about
the theorems has been included, further background and of the theorems can be found in
given references.

In Chapter 3 Diffie-Hellman, Elgamal, and MTI protocols will be discussed. The objec-
tive of this chapter is to review Diffie-Hellman based on protocols needed to understand
the next chapter. Moreover, the man-in-the-middle attack will be considered on Diffie-
Hellman protocol and MTI/A0.

Chapter 4 which is the main part of this paper, consists of the protocol which is proposed
in this research. This protocol is extended from Diffie-Hellman and MTI/C1 protocols.
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The security points will be discussed in the rest of this chapter. Two cases of the man-
in-the-middle attack have been considered about this protocol. Most of these attacks are
based on mathematical tricks that it has been tried to consider the most important ones.

The last chapter consists of the conclusions and future works which the results and
problems will be considered.
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Chapter 2

Mathematical Background

This chapter is a collection of basic material on Number Theory, Groups, Rings, Fields,
and Finit Fields that will be used throughout this research. The purpose of the chapter
is to recall the notation and facts from Number Theory which we will need to have at our
fingertips in our later work. Further background and proofs of the facts presented here
can be found in references given in [1, 2, 4, 8, 9, 10, 12, 13].

2.1 Topics in Number Theory

2.1.1 Divisibility

The set of integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is denoted by symbol Z.

Definition 2.1.1 Let a, b be integers. Then a divides b (equivalently: a is a divisor of b,
or a is a factor of b) if there exists an integer c such that b = ac. if a divides b, then this
is denoted by a|b.

Example 2.1.1 (i) −3|18, since 18 = (−3)(−6). (ii) 173|0, since 0 = (173)(0).

The following are some elementary properties of divisibility.

Proposition 2.1.1 (properties of divisibility)

1. a|a.

2. If a|b and b|c, then a|c.
3. If a|b and a|c then a|(bx + cy) for all x, y ∈ Z.

4. If a|b and b|a, then a = ±b.

Definition 2.1.2 (division algorithm for integers) if a and b are integers with b ≥ 1, then
ordinary long division of a by b yields integers q (the quotient) and r (the remainder) such
that
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a = qb + r, where 0 ≤ r < b.

Moreover, q and r are unique. The remainder of the division is denoted a mod b, and the
quotient is denoted a div b.

Example 2.1.2 if a = 73, b = 17, then q = 4 and r = 5. Hence 73 mod 17 = 5 and
73 div17 = 4.

Definition 2.1.3 An integer c is a common divisor of a and b if c|a and c|b.

Definition 2.1.4 A non-negative integer d is the greatest common divisor of integers a
and b, denoted d = gcd(a, b), if

1. d is a common divisor of a and b; and

2. whenever c|a, and c|b, then c|d.

Equivalently, gcd(a, b) is the largest positive integer that divides both a and b, with the
exception that gcd(0, 0) = 0.

Example 2.1.3 The common divisors of 12 and 18 are {±1,±2,±3,±6}, and gcd(12, 18) =
6.

Definition 2.1.5 A non-negative integer d is the least common multiple of integers a and
b, denoted l = lcm(a, b), if

1. a|l and b|l; and

2. whenever a|c, and b|c, then l|c.
Equivalently, lcm(a, b) is the smallest non-negative integers divisible by both a and b.

Theorem 2.1.1 If a and b are positive integers, then lcm(a, b) = a · b/gcd(a, b).

Example 2.1.4 Since gcd(12, 18) = 16, it follows that lcm(12, 18) = 12 · 18/6 = 36.

Definition 2.1.6 (prime numbers) An p ≥ 2 is said to be prime if its only positive
divisors are 1 and p. Otherwise, p is called composite.

Theorem 2.1.2 If p is prime and p|ab, then either p|a or p|b(or both).

Theorem 2.1.3 There are an infinite number of prime numbers.

Proof.
Let us assume that there are only finitely many primes, then we can list them all:

p1, p2, · · · , pr.
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Let P be their product, a very big number but still finite:

P = p1 × p2 × · · · × pr.

We now consider P + 1 which is an integer and so can be factored into primes. But since
all of the primes divide P , none of them divide P + 1, since if pi divides P and it divides
P + 1, then it must divide 1. This our contradiction.

Observe that all that this proof does for us is prove that there are infinitely many
primes. It is useless in trying to generate the primes. If we know the first n primes, this
will give us a new prime, but probably not the next prime. Also, this does not promise
that P + 1 will be a prime. For example:

(2× 3× 5× 7× 11× 13) + 1 = 30031 = 59× 509.

Theorem 2.1.4 (fundamental theorem of arithmetic) Factorization into primes is unique
up to order.

Proof.
We will actually prove that every integer with non-unique factorization has a proper
divisor with non-unique factorization. If there were integers with non-unique factorization,
then eventually we would be reduced to a prime with non-unique factorization, and that
would conradict the fact that it is a prime and thus has no positive divisors other than 1
and itself.

Let n be an integer with non-unique factorization:

n = p1 × p2 × · · · × pr

= q1 × q2 × · · · × qs,

where the primes are not necessarily distinct, but where the second factorization is not
simply a reordering of the first. The prime q1 divides n and so it divides the product of
the pi’s. By repeating this, there is at least one pi which is divisible by q1. If necessary,
reorder the pi’s so that q1 divides p1. Since p1 is prime, q1 must equal p1. This says that

n

q1
= p2 × p3 × · · · × pr

= q2 × q3 × · · · × qs.

Since the factorization of n were distinct, there factorizations of n/q1 must also be distinct.
Therefore n/q1 is proper divisor of n with non-unique factorization.

where the pi are distinct primes, and the ei are positive integers. Furthermore, the
factorization is unique up to rearrangement of factors.

Theorem 2.1.5 If a = pe1
1 pe2

2 · · ·pek
k , b = pf1

1 pf2
2 · · · pfk

k , where each ei ≥ 0 and fi ≥ 0,
then

gcd(a, b) = p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(ek,fk)

k
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and

lcm(a, b) = p
max(e1,f1)
1 p

max(e2,f2)
2 · · · pmax(ek ,fk)

k .

Example 2.1.5 Let a = 4864 = 28 · 19, b = 4358 = 2 · 7 · 13 · 19. Then gcd(4864, 3458) =
2 · 19 = 38 and lcm(4864, 3458) = 28 · 7 · 13 · 19 = 442624.

Definition 2.1.7 For n ≥ 1, let ϕ(n) denote the number of integers in the interval [1, n]
which are relatively prime to n. The function ϕ is called the Euler phi function.

Theorem 2.1.6 (properties of Euler phi function)

1. If p is a prime, then ϕ(p) = p− 1.

2. The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then
ϕ(mn) = ϕ(m) · ϕ(n).

3. If pe1
1 pe2

2 · · · pek
k is the prime factorization of n, then

ϕ(n) = pe1−1
1 (p1 − 1)× pe2−1

2 (p2 − 1)× · · · × pek−1
k (pk − 1)

= n
(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pk

)
.

2.1.2 Euclidean Algorithms

Let a and b be non-negative integers, each less than or equal to n. The number of bits
in binary representation of n is �ln n�+ 1, and this number is approximated by lnn. The
number of bit operations for the four basic integer operations of addition , subtraction,
multiplication, and division using classical algorithms is summarized in Table 2.1. Note

Operation Bit complexity

Addition a + b O(ln a + ln b) = O(lnn)
Subtraction a− b O(ln a− ln b) = O(lnn)
Multiplication a · b O((ln a)(ln b)) = O((lnn)2)
Division a = qb + r O((ln q)(ln b)) = O((lnn)2)

Table 2.1: Bit complexity of basic operations in Z

that, the above equations about the bit operations are well-known statements which
furture proofs and informaition can be found in references given in [1,2]. The other way
to write the above equations is as following. The notation T ime(A) denotes the number
of bit operations for the job needed in A.

T ime(a + b) = O(log(max(a, b))), bit operations, where a, b ∈ Z.
T ime(a× b) = O(log a log b), bit operations, where a, b ∈ Z.
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T ime(a/b) = O(log a log b), bit operations, where a, b ∈ Z.
T ime(

√
a) = O(log3 a), bit operations, where a ∈ Z.

T ime(ga mod b) = O(log a log2 b), where a, b ∈ Z, for some fixed integer g.

For computing the greatest common divisor of two integers the most efficient algorithm
is the Euclidean Algorithm which is based on the following simple fact.

Theorem 2.1.7 If a and b are positive integers with a > b, then gcd(a, b) = gcd(b, a mod b).

The Euclidean algorithm consists of performing the following sequence of divisions Then

a = q1b + r1, 0 < r1 < b
b = q2r1 + r2, 0 < r2 < r1

r1 = q3r2 + r3, 0 < r3 < r2
...

rn−2 = qnrn−1 + rn, 0 < rn < rn−1

rn−1 = qn+1rn + 0,

(a > b > r1 > r2 > · · · > rn > 0)

the greatest common divisor will be

gcd(a, b) = gcd(b, r1) = gcd(r2, r1) = · · · = gcd(rn, 0) = rn.

Hence, it follows that gcd(a, b) = rn. Further information can be found in references
[9,12].

Algorithm Euclidean algorithm for computing the greatest common divisor of two integers
INPUT: two non-negative integers a and b with a ≥ b.
OUTPUT: the greatest common divisor of a and b.

1. While b �= 0 do the following:
1.1 Set r ← a mod b, a← b, b← r.

2. Return(a).

Table 2.2: Euclidean Algorithm

Theorem 2.1.8 The above algorithm has a running time of O((lnn)2) bit operations.

The Euclidean algorithm can be extended so that it not only yields the greatest common
divisor d of two integers a and b, but also integers x and y satisfying ax + by = d.
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Algorithm Extende Euclidean algorithm
INPUT: two non-negative integers a and b with a ≥ b.
OUTPUT: d = gcd(a, b) and integers x, y satisfying ax + by = d.

1. If b = 0 then set d← a, x �= 1, y ← 0 and return(d, x, y).
2. Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1.
3. While b > 0 do the following :

3.1 q ← �a/b�, r ← a− qb, x← x2 − qx1, y ← y2 − qy1.
3.1 a← b, b← r, x2 ← x1, x1 ← x, y2 ← y1, andy1 ← y.

4. Setd← a, x← x2, y ← y2, and return(d, x, y).

Table 2.3: Extended Euclidean Algorithm

Theorem 2.1.9 Extended Euclidean algorithm has running time of O((lnn)2) bits op-
erations.

Since the Euclidean algorithm computes the greatest common divisors, it can be used
to determine if a positive integer a < n has a multiplicative inverse(it will discussed in
section 2) molulo n. However it does not compute the value of the multiplicative inverse.

2.1.3 Congruences

Let n be a positive integer.

Definition 2.1.8 If a and b are integers, then a is said to be congruence to b modulo n,
written a ≡ b (mod n), if n devides (a − b). The integer n is called the modulus of the
congruence.

Theorem 2.1.10 (properties of congruences) For all a, a1, b, b1, c ∈ Z, the following are
true.

1. a ≡ b (mod n) if and only if a and b leave the same remainder when divided by n.

2. (reflexivity) a ≡ a (mod n).

3. (symmetry) If a ≡ b (mod n), then b ≡ a (mod n).

4. (transitivity) If a ≡ b (mod n), and b ≡ c (mod n), then a ≡ c (mod n).

5. If a ≡ a1 (mod n), and b ≡ b1 (mod n), then a + b ≡ a1 + b1 (mod n) and
ab ≡ a1b1 (mod n).

Definition 2.1.9 The integers modulo n, denoted Zn, is the set of (equivalence classes
of integers) {0, 1, 2, . . . , n− 1}. Addition, subtraction, and multiplication in Zn are per-
formed modulo n.
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Example 2.1.6 Z25 = {0, 1, 2, . . . , 24}. In Z25, 13 + 16 = 4, since 13 + 16 = 29 ≡
4 (mod 25). Similarly, 13 · 16 = 8 in Z25.

Theorem 2.1.11 (Chinese remainder theorem, CRT) If the integers n1, n2, . . . , nk are
pairwise relatively prime, then the system of simultaneous congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

has a unique solution modulo n = n1n2 · · ·nk.

Example 2.1.7 The pair of congruences x ≡ 3 (mod 7), x ≡ 7 (mod 13) has a unique
solution x ≡ 59 (mod 91).

Theorem 2.1.12 If gcd(n1, n2) = 1, then the pair of congruences x ≡ a (mod n1), x ≡
a (mod n2) has a unique solution x ≡ a (mod n1n2).

Definition 2.1.10 The multiplicative group of Zn is Z
∗
n = {a ∈ Zn|gcd(a, n) = 1}. In

particular, if n is a prime, then Z
∗
n = {a|1 ≤ a ≤ n− 1}.

Definition 2.1.11 The order of Z
∗
n is defined to be the number of elements in Z

∗
n, namely

|Z∗
n|.

Theorem 2.1.13 Let n ≥ 2 be an integer.

1. (Euler’s Theorem) If a ∈ Z
∗
n, then aϕ(n) ≡ 1 (mod n).

2. If n is a product of distinct primes, and if r ≡ s (mod ϕ(n)), then ar ≡ as (mod n)
for all integers a. In other words, when working modulo such an n exponents can
be reduced modulo ϕ(n).

Definition 2.1.12 Let a, b ∈ Zn. The multiplicative inverse of a modulo n is an integer
x ∈ Zn such that ax ≡ 1 (mod n). If such an x exists, then it is unique, and a is said to
be invertible, or a unit; the inverse of a is denoted by a−1.

Theorem 2.1.14 Let a ∈ Zn. Then a is invertible if and only if gcd(a, n) = 1.

Proof.
First, if gcd(a, n) were greater than 1, we could not have ab = 1 (mod n) for any b,
because that would imply that d divides ab− 1 and hence divides 1.

A special case of Euler’s theorem is Fermat’s (little) theorem.

Theorem 2.1.15 Let p be a prime.
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1. (Fermat’s Theorem) If gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).

2. In particular, ap ≡ a (mod p) for all integers a.

Definition 2.1.13 Let a ∈ Z
∗
n. The order of a, is denoted ord(a), is the least positive

integer t such that at ≡ 1 (mod n).

Theorem 2.1.16 If the order of a ∈ Z
∗
n is t, and as ≡ 1 (mod n), then t divides s. In

particular, t|ϕ(n).

Definition 2.1.14 Let a ∈ Z
∗
n. If the order of g is ϕ(n), then g is said to be a generator

or a primitive element of Z
∗
n. If Z

∗
n has a generator, then Z

∗
n is said to be cyclic.

Theorem 2.1.17 (properties of generators of Z
∗
n)

1. Z
∗
n has a generator if and only if n = 2, 4, pk or 2pk, where p is an odd prime and

k ≥ 1. In particular, if p is a prime, then Z
∗
n has a generator.

2. If g is a generator of Z
∗
n, then Z

∗
n = {ai (mod n)| 0 ≤ i ≤ ϕ(n)− 1}.

3. Suppose that g is a generator of Z
∗
n. Then b = gi (mod n) is also a generator of Z

∗
n

if and only if gcd(i, ϕ(n)) = 1. It follows that if Z
∗
n is cyclic, then the number of

generators is ϕ(ϕ(n)).

4. g ∈ Z
∗
n is a generator of Z

∗
n if and only if gϕ(n)/p �≡ 1 (mod n) for each prime divisor

p of ϕ(n).

Definition 2.1.15 Let a ∈ Z
∗
n. a is said to be quadratic residue modulo n, or square

modulo n, if there exists an x ∈ Z
∗
n such that x2 ≡ a (mod n). If no such x exists, then a

is called a quadratic non-residue modulo n. The set of all quadratic residues modulo n is
denoted by Qn and the set of all quadratic non-residues is denoted by Q̄n.

Example 2.1.8 g = 6 is a generator of Z
∗
13. The powers of g are listed in the following

table. Q13 = {1, 3, 4, 9, 12} and Q̄13 = {2, 5, 6, 7, 8, 11}.

i 0 1 2 3 4 5 6 7 8 9 10 11
ai mod 13 1 6 10 8 9 2 12 7 3 5 4 11

2.1.4 Repeated Squaring Method

A repeated squaring method is a basic computation in modular arithmetic for finding
bn (mod m) when both m and n are very large. There is a clever way of doing this
that is much quicker than repeated multiplication of b itself. The related algorithm is as
following:

Let n0, n1, . . . , nk−1 denote the binary digits of n, i.e.,
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n = n0 + 2n1 + 4n2 + · · ·+ 2k−1nk−1 (nj = 0 or1).

Then, We compute as following :

b2, (b2)2 = b4, (b4)2 = b8, · · · , (b2k−2
)2 = b2k−1

.

It follows as

bn = bn0+2n1+4n2+···+2k−1nk−1

= bn0 · b2n1 · b4n2 . . . b2(k−1)nk−1

= bn0 · (b2)n1 · (b4)n2 · · · (b2k−1
)nk−1

As b2, (b2)2 = b4, (b4)2 = b8, · · · , (b2k−2
)2 = b2k−1

is computed before, bn (mod m) can
be computed easily.

Example 2.1.9 Suppose we want to compute 432678 (mod 987). The basic trick is to
start with a number and keep squaring:

4322 = 186624 ≡ 81 4324 ≡ 812 ≡ 639 4328 ≡ 6392 ≡ 690 . . . 432512 ≡ 858

Since 678 = 512 + 128 + 32 + 4 + 2,

432678 ≡ (81)(639) . . . (858) ≡ 204 (I hope!)

Calculations with exponents involve not-too-many multiplications. If the numbers have
several hundred digits, however, it is necessary to design special subroutines to do the
multiplications.

The idea behind fast exponentiation is that if the exponent is a power of 2 then we can
exponentiate by successively squaring:

x8 = ((x2)2)2,

x256 = (((((((x2)2)2)2)2)2)2)2.

If the exponent is not a power of 2, then we use its binary representation, which is just a
sum powers of 2:

x291 = x256 × x32 × x2 × x1.

Thus to raise x to power n requires only about log n operations.
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2.1.5 The Legendre and Jacobi symbols

The Legendre symbol is a useful tool for keeping track of whether or not an integer a
is a quadratic residure modulo a prime p. Further background and proofs of the facts
presented here can be found in references given in [10, 12, 13].

Definition 2.1.16 Let p be an odd prime and a an integer. The Legendre Symbol
(

a
p

)
is

defined to be

(
a

p

)
=




0, if p|a,
1, if a ∈ Qp,
−1, if a ∈ Q̄p.

Theorem 2.1.18 (properties of Legendre symbol) Let p be a prime and a, b ∈ Z. Then
the Legendre symbol has the following properties:

1.
(

a
p

) ≡ a(p−1)/2 (mod p). In paticular,
(

1
p

)
= 1 and

(−1
p

)
= (−1)(p−1)/2. Hence

−1 ∈ Qp if p ≡ 1 (mod 4), and −1 ∈ Q̄p if p ≡ 3 (mod 4).

2.
(

ab
p

)
=

(
a
p

)(
b
p

)
. Hence if a ∈ Z

∗
p, then

(
a2

p

)
= 1.

3. If a ≡ b (mod p), then
(

a
p

)
=

(
b
p

)
.

4.
(

2
p

)
= (−1)(p2−1)/8. Hence

(
2
p

)
= 1 if p ≡ 1 or 7 (mod 8), and

(
2
p

)
= −1 if

p ≡ 3 or 5 (mod 8).

5. (law of quadratic reciprocity) If q is an odd prime distinct from p, then

(
p

q

)
=

(
q

p

)
(−1)(p−1)(q−1)/4

.

In other words,
(

p
q

)
=

(
q
p

)
unless both p and q are congruent to 3 modulo 4, in which(

p
q

)
= −(

q
p

)
.

The Jacobi symbol is a generalization of the Legendre symbol to integers n which are odd
but not necessarily prime.

Definition 2.1.17 Let n ≥ 3 be odd with prime factorization n = pe1
1 pe2

2 · · · pek
k . Then

the Jacobi symbol
(

a
n

)
is defined to be

(
a

n

)
=

(
a

p1

)e1
(

a

p2

)e2

· · ·
(

a

pk

)ek

.

16



Theorem 2.1.19 (properties of Jacobi symbol) Let m ≥ 3, or n ≥ 3, be odd integers,
and a, b ∈ Z. Then the Jacobi symbol has the following properties:

1.
(

a
n

)
= 0, 1 or −1. Moreover,

(
a
n

)
= 0 if and only if gcd(a, n) �= 1.

2.
(

ab
n

)
=

(
a
n

)(
b
n

)
. Hence if Z

∗
n, then

(
a2

n

)
= 1.

3.
(

a
mn

)
=

(
a
m

)(
b
n

)
.

4. If a ≡ b (mod n), then
(

a
n

)
=

(
b
n

)
.

5.
(

1
n

)
= 1.

6.
(−1

n

)
= (−1)(n−1)/2. Hence

(−1
n

)
= 1 if n ≡ 1 (mod 4), and

(−1
n

)
= −1 if

n ≡ 3 (mod 4).

7.
(

2
n

)
= (−1)(n2−1)/8. Hence

(
2
n

)
= 1 if n ≡ 1 or 7 (mod 8), and

(
2
n

)
= −1 if n ≡ 3 or

5 (mod 8).

8.
(

m
n

)
=

(
n
m

)
(−1)(m−1)(n−1)/4. In other words

(
m
n

)
=

(
n
m

)
unless both m and n are

congruent to 3 modulo 4, in which case
(

m
n

)
= −(

n
m

)
.

2.2 Groups

This section provides an overview of basic algebra objects and their properties.

Definition 2.2.1 A binary operation ∗ on a set S is a mapping from S × S to S. That
is, ∗ is a rule which assigns to each order pair of elements from S an element of S.

Definition 2.2.2 A group operation (G, ∗) consists of a set G with a binary operation ∗
on G satisfying the following three axioms.

1. The group is a associative. That is, a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

2. There is an element 1 ∈ G, called the identity element, such that a ∗ 1 = 1 ∗ a = a
for all a ∈ G.

3. For each a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such that
a ∗ a−1 = a−1 ∗ a = 1.

A group G is abelian (or commutative) if, furthermore,

4. a ∗ b = b ∗ a for all a, b ∈ G.

Definition 2.2.3 A group G is a finite if |G| is finite. The number of elements in a finite
group is called its order.

Definition 2.2.4 A group G is a cyclic if there is an element g ∈ G such that for each
b ∈ G there is an integer i with b = gi. Such an element g is called a generator of G.
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Theorem 2.2.1 If G is a group an a ∈ G, then the set of all powers of a forms a cyclic
subgroup of G, called the subgroup generated by a, and denoted 〈a〉.

Theorem 2.2.2 Let G be a group, and let a ∈ G be an element of finite order t. Then
|〈a〉|, the size of the subgroup generated by a, is equal to t.

Example 2.2.1 Consider the multiplicative group a ∈ Z
∗
19 = {1, 2, . . . , 18} of order 18.

The group is cyclic, and a generator is g = 2. The subgroups of a ∈ Z
∗
19, and the

generators are listed in the following table.

Subgroup Generators Order

{1} 1 1
{1, 18} 18 2
{1, 7, 11} 7, 11 3

{1, 7, 8, 11, 12, 18} 8, 12 6
{1, 4, 5, 6, 7, 9, 11, 16, 17} 4, 5, 6, 9, 16, 17 9
{1, 2, 3, . . . , 18} 2, 3, 10, 13, 14, 15 18

Table 2.4: The subgroups of Z
∗
19.

2.3 Rings

Definition 2.3.1 A ring (R, +,×) consists of a set R with two binary operations arbi-
trarily denoted + (addition) and × (multiplication) on R, satisfying the following axioms.

1. (R, +) is an abelian group with identity denoted 0.

2. The operation × is associative. That is a× (b× c) = (a× b)× c for all a, b, c ∈ R.

3. There is a multiplicative identity denoted 1, with 1 �= 0, such that 1×a = a×1 = a
for all a ∈ R.

4. The operation × is distributive over +. That is, a× (b + c) = (a× b) + (a× c) and
(b + c)× a = (b× a) + (c× a) for all a, b, c ∈ R.

The ring is a commutative ring if a× b = b× a for a, b ∈ R.

Definition 2.3.2 An element of a of a ring R is called a unit or an invertible element if
there is an element b ∈ R such that a× b = 1.
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2.4 Fields

Definition 2.4.1 A field is a commutative ring in which all non-zero elements have mul-
tiplicative inverses.

Theorem 2.4.1 Zn is a field (under the usual operations of addition and multiplication
modulo n) if and only if n is a prime number. If n is prime, then Zn has characteristic n.

Theorem 2.4.2 If the characteristic n of a field is not 0, then n is a prime number.

2.4.1 Finite Fields

Definition 2.4.2 A finite field is a field F which contains a finite number elements. The
order of F is the number of elements in F .

Theorem 2.4.3 (existence and uniqueness of finite fields)

1. If F is a finite field, then F contains pm elements for some prime p and integer
m ≥ 1.

2. For every prime power order pm, there is a unique (up to isomorphism) finite field
of order pm . This field is denoted Fpm, or sometimes by GF (pm).

Theorem 2.4.4 if Fq is a finite field of order q = pm, p is a prime, then the characteristic
of Fq is p. Moreover, Fq contains a copy of Zp as a subfield. Hence Fq can be viewed as
an extension field of Zp of degree m.

Theorem 2.4.5 (subfields of a finite field) Let Fq be a finite field of order q = pm. Then
every subfield of Fq has order pn, for some n that is a positive divisor of m. Conversely, if
n is positive divisor of m, then there is exactly one subfield of Fq of order pn; an element
a ∈ Fq is in the subfield Fpn if and only if apn

= a.

Definition 2.4.3 The non-zero elements of Fq from a group under multiplication called
the multiplicative group of Fq, denoted F

∗
q.

Theorem 2.4.6 F
∗
q is a cyclic group of order q − 1. Hence aq = a for all a ∈ Fq.

Proposition 2.4.1 The order of any a ∈ F
∗
q devides q − 1.

Proof.
For aq−1 = 1 let d be the order of a, i.e., the smallest positive power which gives 1. If d
did not divide q − 1, we could find a smaller positive number r- namely, the remainder
when

q − 1 = bd + r, where 1 ≤ r < d
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is divided by d- such that

ar · abd = aq−1 = 1.

But this contradicts the minimality of d. This concludes the proof.

Definition 2.4.4 A generator of the cyclic group F
∗
q is called a primitive element or

generator of Fq.

Theorem 2.4.7 If a, b ∈ Fq, a finite field of characteristic p, then

(a + b)pt
= apt

+ bpt
for all t ≥ 0.

2.5 Finding Primitive Elements in Zp

In many public key distribution protocols based on Diffie-Hellman, it is necessary to find
a primitive element of g ∈ Zp, where p is prime[16]. This is not too difficult to do if the
factorization of p− 1 is known. For the remainder of this section, let us assume that the
factorization of p− 1 is

p− 1 = p1
e1p2

e2 · · · pk
ek

where p1, p2, · · · , pk are distinct primes.
First, we present a lemma that provides a method of determining if a given element

g ∈ Z
∗
p is primitive.

Lemma 2.5.1 Suppose p is prime, and the factorization of p−1 is as given above. Then
g ∈ Z

∗
p is a primitive.

g(p−1)/pj �≡ 1 (mod p)

for 1 ≤ j ≤ k.

Proof.
Let d denote the order of g. We know that d is a divisor of p− 1 and g is primitive if and
only if d = p− 1.

First, suppose that g(p−1)/pj ≡ 1 (mod p) for some j. Then clearly d ≤ (p − 1)/pj, so
certainly d �= p− 1.

Conversely, suppose that g(p−1)/pj �≡ 1 (mod p) for 1 ≤ j ≤ k. Suppose that d �= p− 1.
Since d is a divisor of p− 1 and d < p− 1, there exists a prime pj (1 ≤ j ≤ k) such that
pj is a divisor of (p − 1)/d. But this implies that d is a divisor of (p − 1)/pj. Hence, it
follows that

g(p−1)/pj ≡ gd ≡ 1 (mod p),

which is a contradiction. This proves that d = p− 1, as desired.
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Now, given that we have an efficient method of detemining if a given element g is
primitive, how do we go about finding a primitive element? This can be done quite
easily by means of Las Vegas algorithm, by choosing random values for g and testing
them, until a primitve element is found. The effectiveness of this approach depends on
the probability that a random element g ∈ Z

∗
p is primitive. Altogether, there are exactly

ϕ(p−1) primitive elements in Z
∗
p, so the probability that a random element g is a primitive

element is ϕ(p− 1)/(p− 1).
One special case of interest is when p = 2q + 1, where q is prime. In this case, the

following corollary is obtained.

Corollary 2.5.1 Suppose p and q are prime, and p = 2q + 1. Suppose g ∈ Z
∗
p and

g �≡ ±1 (mod p). Then g is a primitive element if and only if g(p−1)/2 �≡ 1 (mod p).

Proof.
Observe that g(p−1)/q ≡ g2 (mod p), and g2 ≡ 1 (mod p) if and only if g ≡ ±1 (mod p).
Hence the result follows from the last Lemma.

In fact, If g �≡ ±1 (mod p) and g is not primitive, then g(p−1)/2 ≡ 1 (mod p). But then
we have Thus, by this Corollary (−g) must be primitive.

(−g)(p−1)/2 ≡ (−1)(p−1)/2g(p−1)/2 (mod p)
≡ (−1)(p−1)/2 (mod p)
≡ −1 (mod p).

This result is recorded as follows:

Corollary 2.5.2 Suppose p and q are prime, and p = 2q + 1. Suppose g ∈ Z
∗
p is not a

primitive element, and g �≡ ±1 (mod p). Then (−g) is a primitive element.

This means that we have an efficient deterministic algorithm to find a primitive element
for when p and (p− 1)/2 are both prime.

It is not so easy to verify that elements are primitive if the factorization of p − 1 is
not known. For this reason, the designer of a cryptosystem will often construct p in such
a way that the factorization of p − 1 is known. For example, it is often desirable to
implement a cryptosystem in Zp, where p = 2q + 1 and p and q are both prime. One
reason why this might be done is that it ensures that the system will not be vulnerable
to a Pohlig-Hellman[20] attack on the discrete logarithm problem. To find such a p, the
designer of the system will choose a random odd value q, and test both p and p = 2q + 1
for primality using one of the probablistic primality tests[1,13]. If either of p or q is found
to be composite, then a new random value of q is chosen and the process is repeated.

As another example, several protocols are implemented in Zp where p− 1 has a prime
divisor q of a specified size. A convenient realization of such a system would be to take
p = 2qr + 1, where p, q and r are all primes. if q is to be a 160-bit prime and p is to be a
512-bit prime, then r will be a prime of approximately 352 bits. Here, the designer of the
system would begin by choosing random values q and r of the appropriate size, and then
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define p = 2qr + 1. The three integers p, q and r will all be tested for primality using a
probabilistic primality testing algorithm.

2.6 The Pohlig-Hellman Algorithm

In this section, a bit of further explanation concerning the workings of the Pohlig-Hellman
algorithm is provided. It is needed to be understood this algorithm because Pohlig-
Hellman attack is a serious attack which is based on mathematical views. The same
notation will be used as in the last section: p is prime, g is a primitive element in Zp,
and h ∈ Z

∗
p . Our goal is to determine a = logg h, where, without loss of generality,

0 ≤ a ≤ p− 2.
The prime power factorization of p− 1 is

p− 1 = p1
e1p2

e2 · · · pk
ek ,

where p1, p2, · · · , pk are distinct primes. The main step is to compute g (mod pi
ei),

1 ≤ i ≤ k. So Suppose that q = pi and e = ei for some i, 1 ≤ i ≤ k. Here, it will be
showed how to compute x = a (mod qe).

First, x is expressed as

x =
e−1∑
i=0

aiq
i,

where 0 ≤ ai ≤ q − 1 (0 ≤ i ≤ e− 1). From this it follows that

a = a0 + a1q = . . . + ae−1q
e−1 + sqe,

for some integer s.
The computation of a0 follows from the fact that

h
p−1

q ≡ g
a0(p−1)

q (mod p). (2.1)

Here is a proof of Equatian (2.1):

h
p−1

q ≡ (ga)
(p−1)

q (mod p)

≡ (ga0+a1q+...+ae−1qe−1+sqe
)

(p−1)
q (mod p)

≡ (ga0+Kq)
(p−1)

q (mod p) (Where K is an integer)

≡ g
a0(p−1)

q gK(p−1) (mod p)

≡ g
a0(p−1)

q (mod p).

From this,it is a simple matter to determine a0.
The next step would be to compute a1, a2, . . . , ae−1 (if e > 1). These computations can

be done from a suitable generalization of Equation (2.1).
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First denote h0 = h, and

hj = hg−(a0+a1q+···+aj−1qj−1) (mod p),

for 0 ≤ j ≤ e− 1. We make use of the following generalization of Equation (2.1):

(hj)
p−1

qj+1 ≡ g
aj(p−1)

q (mod p). (2.2)

(Observe that when j = 0, Equation (2.2) reduces to Equation (2.1).)
The proof of Equation (2.2) is much the same as that Equation (2.1):

(hj)
p−1

qj+1 ≡ (ga−(a0+a1q+...+aj−1qj−1))
p−1

qj+1 (mod p)

≡ (gajqj+···+ae−1qe−1+sqe
)

p−1

qj+1 (mod p)

≡ (gajqj+Kjqj+1
)

p−1

qj+1 (mod p) (Where Kj is an integer)

≡ g
aj(p−1)

q gKj(p−1) (mod p)

≡ g
aj(p−1)

q (mod p).

Hence, given hj, it is straightforward to compute aj from Equation (2.2).
To complete the description of the algorithm, it suffices to observe that hj+1 can be

computed from hj by means of a simple recurence relation, once aj is known. This follows
from the following relation, which is proved easily:

hj+1 = hjg
−ajqj

(mod p). (2.3)

Now, we can compute a0, h1, a1, h2, · · · , he−1, ae−1 by applying Equation (2.2) and (2.3).
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Chapter 3

Public Key Distribution System

In a communication network, two users, wishing to communicate with each other via a
common-key encryption scheme, have to share a secret cryptographic key not known to
other users. This is what we call the key distribution problem[19].

This chapter considers key establishment protocols and related cryptographic tech-
niques which provide shared secrets between to parties, typically for subsequent use as
symmetric keys for a variety of cryptographic purposes including encryption, decryption,
and message authentication. Remainder of this chapter is organized as follows. Section 1
provides background materials including basic definitions and concepts, and discussion of
objective. Section 2 and section 3 discuss one-way functions and key agreement protocols,
respectively, based on Diffie-Hellman Key Exchange Protocols.

3.1 Definitions

The purpose of a cryptosystem is to encipher an intelligible cleartext (also called plain-
text), thus producing an unintelligible ciphertext (also called cryptogram). The included
receiver must be able to decipher the ciphertext, thus recovering the plaintext. However,
eavesdroppers (also called crptanalysts) must be unable to decrypt the ciphertext. Notice
the important difference between deciphering and decryption.

There are several ways in which cryptosystems can be classified. Generally, cryptosys-
tems are classified into two classes; Private-Key cryptosystems which are beyond this
research, and Public-Key cryptosystems which will be discussed in whole this research.

A cryptosystem is a five-tuple (M, C, K, E , D), where the following conditions are
satisfied:

• M denotes a set called the message space. An element of M is called a plaintext
message or simply a plaintext.

• C denotes a set called the ciphertext space. An element of C is called a ciphertext.

• K denotes a set called the key space. An element of K is called a key.

• E denotes a set called the enciphering transformation,
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E = {Ek | k ∈ K}
Ek : M→ C, (k ∈ K).

• D denotes a set called the deciphering transformation,

D = {Dk | k ∈ K}
Dk : C →M, (k ∈ K).

An enciphering scheme consists of a set {Ee | e ∈ K} of encryption transformations such
that Ee(m) = c for all m ∈ M, and a corresponding set {Dd | d ∈ K} of deciphering
transformations such that Dd(c) = m with the property that for each e ∈ K there is a
unique d ∈ K such that De = E−1

e that is, Dd(Ee(m)) = m for all m ∈ M.
The keys e and d in the proceding definition are referred to as a key pair and sometimes
denoted by (e, d). Note that, e and d could be the same.

3.2 One-Way Functions

Definition 3.2.1 A function f from a set X to a set Y is called a one-way function if
f(x) is“ easy” to compute for all x ∈ X but“ essentially all” elements y ∈ Im(f) it is
“ computationally infeasible” to find any x ∈ X such that f(x) = y.

The notion of one-way functions is at the core of public-key cryptography which has
the property that someone who knows only how to encipher cannot use the enciphering
key to find the deciphering function, becuase f : M easy−−→ C is easy to compute once
the enciphering key Ek is known, but it is very hard in practice to compute the inverse
function f−1 : C hard−−→ M. That is, from the standpoint of realistic computability, the
function f is not invertible (without some additional information - the deciphering key
Dk). Such a function f is called a trapdoor function. That is, a trapdoor function
f is a function without having some additional auxiliary information beyond what is
necessary to compute f . The inverse f−1 is easy to compute, however, for someone who
has this information Dk (the“ decipheting key”). This notion should not be confused
with functions that are mathimatically non-invertible for lack of being ono-to-one or onto.
More details about functions can be found in references [7,12].

Example 3.2.1 A simple example of a candidate one-way function is integer multiplica-
tion. It is easy to multiply very large integers whereas even the most powerful computer
with the best available algorithm is incapable of factoring a mere two hundred digit num-
ber that is the product of two roughtly equal size within a reasonable time.

Example 3.2.2 A prime number is a positive integer greater than 1 whose only positive
integer divisors are 1 and itself. Select primes p = 48611, q = 53993, form n = pq =
2624653723, and let X = {1, 2, 3, . . . , n − 1}. Define a function f on X by f(x) = rx

for each x ∈ X, where rx is the remainder when x3 is devided by n. For instance,
f(2489991) = 1981394214 since 24899913 = 5881949859 · n + 1981394214. Computing
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f(x) is relatively simple thing to do, but to inverse the procedure is much more difficult;
that is, given a remainder to find the value x which was orginally cubed. This procedure
is referred to as the computation of a modular cube root with modulus n. If the factors
of n are unknown and large, this is a difficult problem; however, if the factors p and q of
n are known then there is an efficient algorithm for computing modular cube roots.

3.3 Authentication and Identification

Authentication protocols are designed to provide two or more specific entities communi-
cating over an open network to achieve some cryptographic goals such as confidentiality,
data integrity, entity authentication, message authentication, not repudiation, and key au-
thentiation. In this section a brief introduction to authentication is discussed, for details
refere to [6].

An authenticaiton is one of the most inportant of all informaion security objectives. As
discussed in [14] it must be easy for anyone to recognize the signature as authentic, but
impossible for anyone other than the legitimate signer to produce it.

In public key cryptography there is an especially easy way to identify oneself in such
a way that no one could be simply pretending to be you. Let A (Alice) and B (Bob) be
two users of the system. Let fA be the enciphering transformation with which any user
of the system sends a message to Alice, and let fB be the same for Bob. For simplicity,
we assume that the set M of all possible plaintext message units and the set C of all
possible ciphertext message units are equal, and are the same for all users. Let M be
Alice’s“ signature” (perhaps including an identification number, a statement of the time
the message was sent, ets.). It would not be enough for Alice to send Bob the encoded
message fB(M), since everyone knows how to do that, so there would be no way of knowing
that the signature was not forged. Rather, at the beginning (or end) of the message Alice
transmits fBfA

−1(M). Then, when Bob deciphers the whole message, including this part,
by applying fB

−1, he finds that everything has become plaintext except for a small section
of jibberish, which is fA

−1(M). Since Bob knows that the message is claimed to be from
Alice, he applies fA (which he knows, since Alice’s encihpering key is public), and obtains
M . Since no one other than Alice could have applied the function fA

−1 which is inverted
by fA, he knows that the message was from Alice.

3.3.1 Identification

Definition 3.3.1 An identification or entity authentication technique assures one party
of both the identity of a second party involved, and that the second was active at the
time the evidence was created or acquired.

Typically the only data transmitted is that necessary to identify the communication
parties. The entities are both active in the communication, giving a timliness guarantee.
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3.3.2 Data origin authentication

Definition 3.3.2 Data origin authentication or message authentication techniques pro-
vide to one party which receives a message assurance of the identity of the party which
originated the message.

Often a message is provided to receiver along with additional information so that the
receiver can determine the identity of the entity who originated the message. This form
of authentication typically provides no guarantee of timeliness, but is useful in situations
where one of the parties is not active in the communication.

3.4 Diffie-Hellman and related Key Agreement Pro-

tocols

Key establishment protocols come in various flavors. In key transport protocols, a key is
created by one entity and securely transmitted to the second entity, while in key agreement
protocols both entities contribute information which is used to derive the shared secret
key. In symmetric protocols the two entities a priori possess common secret information,
while in asymmetric protocols the two entities share only public informaiton that has been
authenticated. This research is concerned with two-party authenticated key agreement
protocols in the asymmetric setting.

The design of asymmetric authenticated key agreement protocols has a checkered his-
tory. Over the years, numerous protocols have been proposed to meet a variety of desirable
security and performance requirements. Many of these protocols were subsequently found
to be flawed, and then either were modified to resist the new attacks, or were totally aban-
doned. After a series of attacks and modifications, only those surviving protocols which
had received substantial public security and were believed to resist all known attacks were
deemed secure for practical usage [18].

This section focuses on asymmetric authentication key agreement protocols whose se-
curity is based on intractability of the Diffie-Hellman problem. Next section says about
the idea why discrete logs are generally used.

3.4.1 Why discrete logs and Diffie-Hellman?

Almost everything that public key cryptography provides, such as digital signatures and
key exchange, can be accomplished with RSA and its variants. However, cryptosystems
based on discrete exponentiation remain of interest for three main reasons [26]:

1. Patent issues The Diffie-Hellman patent expired in 1997. Therefore anyone in-
terested in using public key cryptography in the United States (which is the only
place where this patent was applied for and issued) can save money and also avoid
licensing negotiations.

2. Technical advantages In many cases where algorithms of comparable function-
ality exist, say one over the finite field of integers modulo a prime p, and another
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using a composite integer n of the same size, breaking the discrete log modulo p
appears to be somewhat harder than factoring the integer n.
Some other advantages of discrete log cryptosystems come from their limitations. It
is widely believed that the U.S. Digital Signature Algorithm is based on discrete logs
because it is harder to use it for encryption than if it were based on RSA (and thus
on integer factorization). This helps enforce export control regulations on strong
encryption without weakening the digital signature methods that are less stringently
controlled. On the other hand, many people like the Diffie-Hellman algorithm, since
the session key it generates is evanescent. In the simplest application of RSA to key
generation, Alice creates a session key and transmits it to Bob using Bob’s public
key. An eavesdropper who can coerce Bob afterwards into revealing his private key
can then recover the full text of the communication exchanged by Alice and Bob. In
contrast, if Alice and Bob use Diffie-Hellman to generate the session key, destroy it
after the session ends, and do not store their communication, then neither coercion
nor cryptanalysis will enable the eavesdropper to find out what information was
exchanged.

3. They are different. Cryptographers have learned by bitter experience that it is
unwise to put all eggs in a single basket. It is desirable to have a diversity of
cryptosystems, in case one is broken. It is an unfortunate fact that discrete logs and
integer factorization are so close that many algorithms developed for one problem
can be modified to apply to the other. For security, it would be better to have much
more diversity. However, more than two decades after the publication of the first
two practical public key systems, the Diffee-Hellman and the RSA algorithms, the
only public key cryptosystems that are trusted and widely deployed are based on
the presumed difficulty of the same two problems those schemes relied upon. There
have been many attempts to find public key schemes based on other principles, but
so far most have led to systems that were broken, and the ones that are still standing
are often regarded with suspicion.

The following notation is used throughout this chapter and the next.

Alice, Bob Honest entities.

Lucy Attacker (also called man-in-the-middle attack).

p A prime number.

g A primitive element of Z
∗
p.

x, y Static private keys of Alice and Bob.

X, Y Static public keys of Alice and Bob; X ≡ gx (mod p), Y ≡ gy (mod p).

r, r′ Ephemeral private keys of Alice and Bob.

The domain parameters (p, g) are common to all entities.
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3.4.2 Diffie-Hellman Key Agreement

Diffie-Hellman key agreement provided the first practical solution to the key distribution
problem, allowing two parties, never having met in advance or shared keying material,
to establish a shared secret by exchanging messages over an open channel. The security
on the intractability of the Diffie-Hellman problem (DHP) which will be discussed a bit
later.

Protocol 1 Ephemeral Diffie-Hellman Key Exchange

Both users Alice and Bob first agree on a prime p and a primitive root g ∈ Z
∗
p.

1. Alice chooses r at random, 1 ≤ r ≤ p− 2.

2. Alice computes X ≡ gr (mod p) and sends it to Bob.

3. Bob chooses r′ at random, 1 ≤ r′ ≤ p− 2.

4. Bob computes Y ≡ gr′ (mod p) and sends it to Alice.

5. Alice computes

K ≡ Y r = (gr′)r = grr′ (mod p).

6. Bob computes

K ′ ≡ Xr′ = (gr)r′ = grr′ (mod p).

While the epheremal Diffie-Hellman protocol provides implicit key authentication in
the presence of passive adversaries, it does not on its own provide any useful services
in the presence of active adversaries since neither entity is provided with any assurance
regarding the identity of the entity it is communicating with. Ephemeral Diffie-Hellman
Key Exchange is supposed to look like this:

gr−−−−−−−−−−−−→
Alice Bobgr′←−−−−−−−−−−−−

Protocol 2 Static Diffie-Hellman Key Exchange

Here, it is assumed that static public keys are exchanged via certificates. CertAlice denotes
Alice’s public key certificate, containing a string of information that uniquely identifies
Alice’s static public key X.

1. Alice sends CertAlice to Bob.

29



2. Bob sends CertBob to Alice.

3. Alice computes K ≡ Y x = (gy)x = gxy (mod p).

4. Bob computes K ′ ≡ Xy = (gx)y = gxy (mod p).

Since each entity is assured that it possesses an authentic copy of the other entity’s public
key, the static Diffie-Hellman protocol provides implicit key authentication. A major
drawback, however, is that Alice and Bob compute the same shared secret K = K ′ ≡ gxy

for each run of protocol. Static Diffie-Hellman Key Exchange is supposed to look like
this:

gx∈CertAlice−−−−−−−−−−−−→
Alice Bobgy∈CertBob←−−−−−−−−−−−−

The drawbacks of the ephemeral and static Diffie-Hellman protocols can be alleviated
by using both static and ephemeral keying materail in the formation of shared secrets
which will be discussed a bit later in this chapter.

Note 3.4.1 (control over Diffie-Hellman key) While it may appear as though Diffie-
Hellman key agreement allows each party to guarantee key freshness and preclude key
control, use of an exponential with small multiplicative order restricts the order of the
overall key. The most degenerate for Zp would be selection of 0 as private exponent,
yielding an exponential with order 1 and the multiplicative identity itself as resulting key.
Thus, either participant may force the resulting key into a subset of the original range
set. Relatedly, some variants of Diffie-Hellman involving unauthenticated exponentials
are vulnerable to the following active attack. Assume g ∈ Z

∗
p where p = Rq + 1 (consider

R = 2 and q prime). Then β = gq = g(p−1)/R has order R (β = −1 for R = 2). If Alice
and Bob exchange unauthenticated short-term exponential gr and gr′, an active adversary
may replace these by (gr)q and (gr′)q, forcing the share key to be K = grr′q = βrr′, which
takes one of only R values (+1 or −1 for R = 2). K may thus be found by exhaustive
trial of R values. A more direct attack involves simply replacing the exchange exponential
by +1 or p− 1 = −1. This general class of attacks may be prevented by authenticating
the exchanged exponentials[5].

Both parties Alice and Bob can encrypt messages using the following encryption trans-
formaion,

c ≡ mK (mod p).

In order to decrypt, the receiver first finds the deciphering key K via the congruence,

K ·K ≡ 1 mod (p− 1).

and then calculates the message,
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m ≡ cK (mod p).

Note that, K exists if and only if gcd(K, p− 1) = 1.

We illustrate the Diffie-Hellman system in the example given below.

Example 3.4.1 Assume the modulus p = 47 and the primitive element g = 23. Suppose
that Alice and Bob have selected their secret keys x = 12 and y = 33. In order to fix the
common secret key K, they calculate their partial keys :

X ≡ gx = 2312 = 27 (mod 47).
Y ≡ gy = 2333 = 33 (mod 47).

After they exchange their partial keys, Alice and Bob compute the common secret key,

K ≡ Y x = Xy = 2733 = 25 (mod 47).

They also find the secret deciphering key K using the following congurence :

K ·K ≡ 1 (mod p− 1)→ K ≡ 35 (mod 46).

Now, if the message is m = 16, then the cryptogram is :

c ≡ mK = 1625 = 21 (mod 47).

The receiver recreates the message as following :

m ≡ cK = 2135 = 16 (mod 47).

Unfortunately, the protocol is vulnerable to an active adversary who uses a man-in-
the-midle attack. There is an episode of The Lucy Show in which Vivian Vance is having
dinner in a restaurant with a date, and Lucille Ball is hiding under the table. Vivian
and her date decide to hold hands under the table. Lucy, trying to avoid detection, holds
hands with each of them and they think they are holding hands with each other.

A man-in-the-middle attack on the Diffie-Hellman protocol works in the same way.
Lucy will intercept messages between Alice and Bob and substitute her own messages, as
indicated in the following diagram :

gx−−−−−−−→ gx′−−−−−−−→
Alice Lucy Bobgy′←−−−−−−− gy←−−−−−−−
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At the end of the protocol, Alice has actually established the secret key gxy′
with Lucy,

and Bob has established a secret key gx′y with Lucy. When Alice tries to encrypt a
message to send to Bob, Lucy will be able to decrypt it but Bob will not. ( A similar
situation holds if Bob sends a message to Alice.)

Clearly, it is essensial for Alice and Bob to make sure that they are exchanging messages
with each other and not with Lucy. Before excahnging keys, Alice and Bob might carry out
a separate protocol to establish each others’s identity. But this offers no protection against
an active adversary in the man-in-the-middle attack if Lucy simply remains inactive until
after Alice and Bob have proved their identities to each other. We will discuss more on this
case after introducing some ther protocols which are based on Diffie-Hellman problem.

Diffie-Hellman Problem

The Diffie-Hellman Problem is closely related to the Discrete Logarithm Problem. It is of
significance to public-key cryptosystem becuase its apparent intractability forms the basis
for the security of many cryptographic schemes including Diffie-Hellman Key Exchange.

Definition 3.4.1 The Diffie-Hellman Problem is the following : given a prime p, a gen-
erator of Z

∗
p, and elements gx (mod p) and gy (mod p), find gxy (mod p).

If an active adversary in the man-in-the-middle attack like Lucy could determin x from
X, or if he could determine y from Y , then he could compute K exactly as Alice (or Bob)
does. Both these computations are instances of Discrete Logaritm Problem. So, provided
that the Discrete Logaritm Problem in Z

∗
p is intractable, Diffie-Hellman Key Exchange

is secure against this particular type of attack. However, it is an unproven conjecture
that any algorithm that solves the Diffie-Hellman protocol could also be used to solve the
Discrete Logaritm Problem.

By the remarks made above, the Diffie-Hellman Problem is no more difficult that the
Discrete Logaritm Problem. Although we cannot say precisely how difficult this problem
is.

3.4.3 ElGamal Key Agreement in one-pass

ElGamal key agreement is a Diffie-Hellman variant providing a one-pass protocol with
unilateral key authentication, provided the public key of the recipient is known to the
originator a priori. The protocol is more simply Diffie-Hellman key agreement wherein
the public exponential of the recipient is fixed and has verifiable authenticity.
Protocol ElGamal key agreement (half-certified Diffie-Hellman)
Both users Alice and Bob first agree on a prime p and a primitive root g ∈ Z

∗
p.

1. Alice obtains an authentic copy of Bob’s public key (p, g, gy).

2. Alice chooses r at random, 1 ≤ r ≤ p− 2.

3. Alice computes gr (mod p) and sends it to Bob.
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4. Alice computes K ≡ (gy)r (mod p).

5. Bob computes K ′ ≡ (gr)y (mod p).

Remark 3.4.1 (assurances in one-pass ElGamal) The recipient in the above protocol
has no corroboration of whom he or she shares the secret key with, nor any key freshness
assurances. Neither party obtains entity authentication or key confirmation. It means
that even if an adversary in a man-in-the-middle-attack changes the values sent by Alice,
Bob can not confirm that the received values are sent by Alice.

In the next section some protocols will be discussed which can alleviate the drawbacks
of the ephemeral and static Diffie-Hellman protocols by using both static and ephemeral
keying material in the formation of shared secrets.

3.4.4 MTI two-pass Key Agreement Protocols

In a cryptosystem it is essential to change the keys from time to time. In Diffie-Hellman
Key Exchange scheme it is not so easy to change the public key in order to change the
common key, because when a public key is registered in a public file it is hard to change it
because of time consuming to prove that you are the right person. In order to this, there
are some schemes that make it possible to change the common keys without changing
the public keys. These schemes are classified to MTI[19] constructed by Matsumoto,
Takashima and Imai which are interesting key agreement protocols by modifying Diffie-
Hellman key Exchange. We present some of these protocols and consider the man-in-
middle attack about one of them. Note that, MTI protocols were designed to provide
implicit key authentication, and do not provide key confirmation and MTI/C0 protocol
does not provide implicit key authentication at all.

Before describing any MTI schemes, let consider the following generalization. Any MTI
protocol consists of 3 phases as following :

(a) Registration Phase

Each user 〈i〉 selects a secret data Xi and computes Yi ≡ gXi (mod p) and registers Yi to
the public file.

(b) Transfer Phase

If a user 〈i〉 wants to share a common data with another user 〈j〉, 〈i〉 transfers to 〈j〉 a
data Zij gererated from a secret random number Ri and the registered data Yj and/or the
secret data Xi and/or the primitive element g of GF (p). Then the user 〈j〉 sends back to
〈i〉 a similar data Zji. These Zij and Zji are called the ” transferred data ”.

(c) Key-Generation Phase

The user 〈i〉 composes a data Kij from the accepted Zji, previously generated Xi and Ri,
and the registered data Yj. The user 〈j〉 composes a data Kji in the same manner. The
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data Kij and Kji are the same and denoted by K and said to be the ”shared data ”. This
K will be used as the work key.

Here, both Alice and Bob keep secret the secret key x and y, and register X ≡ gx (mod p),
Y ≡ gy (mod p) to a public file. The prime number p and its primitive root g of Z

∗
p are

public.

Protocol 1 MTI/A0 Key Agreement

1. Alice chooses a random secret r, 1 ≤ r ≤ p− 2.

2. Alice computes Z ≡ gr (mod p) and sends it to Bob.

3. Bob chooses a random secret r′, 1 ≤ r′ ≤ p− 2.

4. Bob computes Z ′ ≡ gr′ (mod p) and sends it to Alice.

5. Alice computes

K ≡ Z ′x · Y r = gxr′+yr (mod p).

6. Bob computes

K ′ ≡ Zy ·Xr′ = gxr′+yr (mod p).

The information transmitted during the protocol is depicted as follows :

gr mod p−−−−−−−−−−−−→
Alice Bobgr′ mod p←−−−−−−−−−−−−

Protocol 2 MTI/B0 Key Agreement

1. Alice chooses a random secret r, 1 ≤ r ≤ p− 2.

2. Alice computes Z ≡ Y r = gyr (mod p) and sends it to Bob.

3. Bob chooses a random secret r′, 1 ≤ r′ ≤ p− 2.

4. Bob computes Z ′ ≡ Xr′ = gxr′ (mod p) and sends it to Alice.

5. Alice computes

K ≡ Z ′x · gr = gr+r′ (mod p).

6. Bob computes

K ′ ≡ Zy · gr′ = gr+r′ (mod p).
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Protocol 3 MTI/C0 Key Agreement

1. Alice chooses a random secret r, 1 ≤ r ≤ p− 2.

2. Alice computes Z ≡ Y r = gyr (mod p) and sends it to Bob.

3. Bob chooses a random secret r′, 1 ≤ r′ ≤ p− 2.

4. Bob computes Z ′ ≡ Xr′ = gxr′ (mod p) and sends it to Alice.

5. Alice computes

K ≡ Z ′xr
= grr′ (mod p).

6. Bob computes

K ′ ≡ Zyr′ = grr′ (mod p).

Protocol 4 MTI/C1 Key Agreement

1. Alice chooses a random secret r, 1 ≤ r ≤ p− 2.

2. Alice computes Z ≡ Y rx = grxy (mod p) and sends it to Bob.

3. Bob chooses a random secret r′, 1 ≤ r′ ≤ p− 2.

4. Bob computes Z ′ ≡ Xr′y = gr′xy (mod p) and sends it to Alice.

5. Alice computes

K ≡ Z ′r = gxyrr′ (mod p).

6. Bob computes

K ′ ≡ Zr′ = gxyrr′ (mod p).

As we discussed before there is no protection against an active adversary in a man-
in-the-middle attack. Clearly even with these protocols neither Alice nor Bob cannot
confirm whom they have exchanged the keys. The only advantage of these protocols is
that an active adversary like Lucy cannot intercept messages with Alice or Bob. But as
well as Lucy, none of Alice or Bob can generate a right key to encipher or decipher the
messages.

Let’s look at the security of MTI/A0 protocol. In the man-in-the-middle attack it is
possible for an active adversary like Lucy to alter the values that Alice and Bob send to
each other. We depict one typical senario that might arise, as follows :

gr−−−−−−−→ gR−−−−−−−→
Alice Lucy BobgR′

←−−−−−−− gr′←−−−−−−−
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In this situation, Alice and Bob will compute different keys:
Alice will compute

K ≡ gry+R′x (mod p).

while Bob will compute

K ′ ≡ gRy+r′x (mod p).

Remark 3.4.2 Neither of the shared keys computed by Alice or Bob can be carried out
by Lucy, since they require knowledge of the secret exponents x and y, respectively. So
even though Alice and Bob have computed different keys (which will of course be useless
to them), neither of these keys can be computed by Lucy. In other words, both Alice and
Bob are assured that the other is the only user in the network that could compute the
key that they have computed. Let me say that it is good but not strong for some cases.
If we can extend these schemes mentioned above, Alice or Bob can confirm whether the
generated key is true or not.

Remark 3.4.3 (computational complexity of MTI protocols) The A0 and B0 protocols
require 3 exponentiations by each party, whereas the C0 and C1 protocols require only 2.
C1 has the additional advantage over B0 and C0 that no inverses are needed; however,
these fixed long-term values may be precomputed.
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Chapter 4

A Proposed Public Key Distribution
Protocol

Numerous Diffie-Hellman-based protocols have been proposed over the years; however
many have subsequently been found to have security flaws. A secure protocol should be
able to withstand both passive attacks (where an adversary attempts to prevent a protocol
from achieving its goals by merely observing honest entities carrying out the protocol)
and active attacks (where an adversary additionally subverts the communications by in-
jecting, deleting, altering or replaying messages), giving implicit key authentication and
key confirmation as well.

This is a chapter that we will focus on the design of a new two-pass protocol. The
security of the protocol is based on intractability of Diffie-Hellman Problem. As you
notice it is an extension of the methods discussed in chapter 3 as MTI. In the last section
of this chapter we will consider the security problems from various aspects. Before having
begun the section let review some mathematical facts about the commutativity of power
functions which are based on the computational difficulty of discrete logarithm.

Let h denote a non-zero element of a finite field Zp, where p is a prime number. Note
that the power functions over GF (p) have the following properties :

1. (hx)y = (hy)x = hxy (commutativity),

2. hx ∗ hy = hx+y (homomorphic property),

3. hx = hx (mod p−1),

where x and y denote arbitrary integers. From (3), we regard the exponents to be in the
set {1, 2, . . . , p− 1} . for each x, x denote the multiplicative inverse of x modulo (p− 1),
and it exists if gcd(x, p− 1) = 1.

4.1 Protocol Description

This protocol consists of 3 phases; Registration Phase, Transfer Phase, and Key-Generation
with Key-Verification Phase for recipient of the message. Each user like Alice and Bob se-
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lects a secret data x and y relatively such that 2 ≤ x, y ≤ p−2, computes X ≡ gx (mod p),
and Y ≡ gy (mod p) and registers X, and Y to the public file. The prime number p and
its primitive root g are public. Clearly, X and Y are public too.
For transferring data and key generating each user, Alice and Bob should do the following:

1. Alice chooses a random secret r, 2 ≤ r ≤ p− 2.

2. Alice computes K ≡ Y rx = grxy (mod p) as the shared key.

3. Bob chooses a random secret r′, 2 ≤ r′ ≤ p− 2, such that gcd(r′, p− 1) = 1. Again
Bob finds r′ which is the inverse element of r′ from r′r′ ≡ 1 (mod p− 1).

4. Bob computes Z ′ ≡ Xr′y = gr′xy (mod p), again v′ ≡ gr′ (mod p) and sends (Z ′, v′)
to Alice.

5. Alice computes Z ≡ Z ′r = grr′xy (mod p) and again v ≡ Xr · v′x = gx(r+r′) (mod p)
and sends (Z, v) to Bob.

6. Bob computes

K ′ ≡ Zr′ = gr(r′r′)xy = grxy (mod p).

and

K ′ ≡ vy ·X−r′y = grxy+r′xy · g−r′xy = grxy (mod p).

to verify if Zr′ = vy · X−r′y. If the above equation stands up, the generated key is
accepted and it means that Bob can be sure that he has a right key. This method
is illustrated in the following diagram :

Z′≡Xr′y=gr′xy (mod p), v′≡gr′ (mod p)←−−−−−−−−−−−−−−−−−−−−−−−−
Alice BobZ≡Z′r (mod p), v≡Xr ·v′x (mod p)−−−−−−−−−−−−−−−−−−−−−−−−→

As noticed the direction of arrows is inverse, it means that when Bob wants to decipher
a message enciphered by Alice sends her a value like (Z ′, v′) and gets (Z, v). As we will
explaint next no one except Bob can decrypt a ciphertext sent by Alice.

4.2 Properties of the Protocol

As we discussed before there is no protection against an active adversary in the man-in-
the-middle attack. But about this protocol the advantages are as following :

• At least Alice assrures that she has the right key.

• Bob can verify whether he has gotten the right key or not.
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• This scheme is non-deterministic, since it uses randomization in the encryption
process.

The other property of this scheme is that an active adversary cannot fool Alice into
accepting an“ invalid ” key as valid, So he tries to fool Bob. But Bob can verify whether
he has a valid key or not.

4.3 Security Aspects : Attacks

The main objective of this section is to highlight the delicate nature of the protocol
discussed above. The security issues will be examined from every possible aspect. Attacks
against Diffie-Hellman protocol comes in different flavors[17] that generally are classified
as following :

• Denial of service Attack: Here, the attacker will try to stop Alice and Bob from
successfully carrying out the protocol. The attacker can accomplish this in many
ways, for example by deleting the messages that Alice and Bob send to each other,
or by overwhelming the parties with unnecessary computation or communication.
The plausibility of this attack depends on what assumption we make about the
adversary. For example, if the adversary can remove and replace any message from
the public communication file, the denial of service attack is impossible to prevent.

• Outsider Attack: In this attack, the attacker tries to disrup the protocol (by
for example adding, removing, replaying messages) so that he gets some interesting
knowledge (i.e. information he could not have gotten by just looking at the public
values). An example of this attack comes with the man-in-the-middle attack.

• Insider Attack: It is possible that the recipient of the message in this protocol
creates a breakable protocol run on purpose in order to try to gain knowledge of
the participants about the secret key of his peer. This is an important attack if
one of the participants holds a static secret key that is used in many key agreement
protocol runs. This attack is prevented in this protocol when Bob wants to generate
the shared key. Even if, Bob uses a static secret key, he has to delete it by computing
Zr′ to generate the shared key.

4.3.1 Man-in-the-middle Attack

(Case 1)

In this protocol there is no way to fool Alice because Alice herself is the generator of the
shared key. So, the only way for an active adversary in the man-in-the-middle attack is
to fool Bob that it is considerd as following:

1. When Bob sends his (Z ′, v′) to Alice, an active adversary may know (Z ′, v′) and
he substitutes (Z ′′, v′′) for (Z ′, v′) and sends it to Alice.

Z ′′ ≡ Xr′′w = gr′′xw, v′′ ≡ gr′′ (mod p).

39



2. Alice computes

Z ≡ Z ′′r = grr′′xw, v ≡ Xr · v′′x = gx(r+r′′) (mod p).

and sends it to Bob.

3. An active adversary computes

K ′′ ≡ Zr′′ = grxw (mod p).

or

K ′′ ≡ vw ·X−r′′w = grxw+r′′xw · g−r′′xw = grxw (mod p).

which is different from real value K ≡ grxy. Thus, he cannot generate the right key.
Meanwhile, Bob computes,

K ′ ≡ Zr′ = grr′r′′xw (mod p),

or

K ′ ≡ vy ·X−r′y = grxy+r′′xy · g−r′xy (mod p).

as the value of the keys is different Bob realizes that he does not have a valid key.

(Case 2)

This senario happens when Alice sends (Z, v) to Bob.

1. When Alice sends her (Z, v) to Bob, an active adversary can know it and he
substitiutes (Z ′′, v′′) for (Z, v).

Z ′′ ≡ Z ′r′′ = gr′r′′xy, v′′ ≡W r′′ · v′w = gw(r′+r′′)(mod p),

where W ≡ gw (mod p).

2. Bob computes

K ′ ≡ (Z ′′)r′ = gr′′xy (mod p),

or

K ′ ≡ v′′y ·X−r′y = gr′′wy+r′wy · g−r′xy (mod p).

as the value of the keys is different Bob realizes that he does not have a valid key.

Even with this case an adversary cannot extract the secret information from the exchanged
values. Moreover, he cannot fool Bob into accepting an”invalid ” key as valid one. To do
this he needs extra information like the secret value y. There are various cases that an
active adversary tries to extract the secret values of Alice and Bob, or to fool Bob into
accepting an invalid key as valid by substitution, unfortunately, he fails, because the way
that Bob generates a key depends on his secret key y.
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4.3.2 Attacks based on Number Theory

The previous man-in-the-middle attack, although it completely breaks the protocol, re-
quires the attacker to be very powerful. The followings are some cases that may occur
from mathematical point of view which are related to number theory.

Degenerate Message Attack

There are degenerate cases in which the protocol does not work. For example when
gx or gy equals one, the transferred data and the shared key becomes 1. Since the
communication channel is public anybody can detect this anomaly. Fortunaltely, this
situation is impossible because both x and y are chosen from {2, . . . , p− 2}.1 Note that,
if the computer program does not realize that gx, gy and gxy cannot equal 1, the protocol
is vulnearble. The same argument holds for values of the form gα·(p−1)·x or gα·(p−1)·y, where
α ≥ 1. So it is safe practice to always verify that gx and gy are positive integers smaller
than p− 1 and greate than 1.

There is another case that an adversary can detect the shared key when r′ = 1. In
this case Z ′ ≡ Xr′y = gxy, and Alice computes Z ≡ Z ′r = grxy = K which is the share
key. Note that the same senario happens when r = 1 that in this case the generated
key will be Z ≡ Z ′r = gr′xy, and the attacker can get some information about the x and
naturally he can find the key. Of course, when both r = 1 and r′ = 1, the shared key
will be gxy ≡ K which will be seen on the public channel. Fortunaltely, this situation is
impossible because both r and r′ are chosen from {2, . . . , p− 2}.

Attacks Based on Composite Order Subgroups

In this attack, the attacker can exploit subgroups that do not have large prime order[7].
This is best illustrated by an example. Suppose Alice and Bob choose a prime p = 2q +1,
where q is prime, and the gererator g of order p − 1 = 2q. The attacker can intercept
the messages gx and gy and exponentiate them by q (he will replace gx by gxq and gy by
gyq.) In Diffie-Hellman protocol the secret key will be gxyq which allows the attacker to
find this value by exhaustive search2.

Let us consider an insider attack by Bob using the attack explained above. As discussed
before, even if Bob uses q instead of r to know the secret value of Alice, it is impossible
for him to do this becuase after receiving Z ≡ Z ′r = grqxy he has to compute Zq ≡
grqqxy = grxy, which means that the generated key does not depend on Bob’s session key.
In spite of that, the protocol protects Alice’s secret key in an insider attack, there is a
lesson to be learned from this attack that we should choose g that generates a large prime
order subgroup or at the very least to make sure that composite order subgroups are not
vulnerable. Moreover, to choose a prime p such that p− 1 contains large factors.

1if g is a generator of Z
∗
p, gz = 1 (mod p) iff z = 0 (mod p− 1).

2the subgroup generated by g(p−1)/2 is {g(p−1)/2 = p− 1, (g(p−1)/2)2 = 1}.
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4.3.3 Other types of Attacks

In the previous section attacks related to the mathematical structure were considered. In
this section issues related to other types of attacks are addressed about this research.

• Message Redirection: It is possible for an adversary in the man-in-the-middle-
attack to intercept and send it to someone other than the intended recipient. Note
that, this attack can be used with ephemeral Diffie-Hellman not with the protocol
in this research becuase an attacker cannot intercept any key with Alice or Bob.
Even if, the attacker sends the messages to someone else, it is impossible for him or
her to decipher it becuase if it had been possible the attacker himself had done it.

• Ciphertext only Attack: In this attack, the cryptanalyst is given c1 = E1(m1),
c2 = E2(m2), . . . ci = Ei(mi), the enciphering of i distinct unknown cleartext mes-
sages under the same unknown key. He is to infer the key K or, lacking this ability
, as many among m1, m2, . . . , mi as possible.
The protocol proposed in this research is secure against this attack becuase a ran-
dom number r is used in the shared key. As the random number refreshes the key
for every message it will be unachievable for a cryptanalyst to find the key. Note
that, even if he can find the shared key, it will be useless for the next time.

• Known plaintext Attack: The cryptanalyst is given c1, c2, . . . , ci as above, but
also the corresponding m1, m2, . . . , mi. He is to infer K or, lacking this ability, he
is to infer mi+1 from some new ciphertext ci+1 = Ei+1(mi+1).
The same senario mentioned above happens to cryptanalysts becuase the random
number used in the shared key refreshes it. Moreover, to do ci+1 = Ei+1(mi+1), he
needs some information about x and y which are secret and nobody excepts the
owners knows them.

• Chosen plaintext Attack: The cryptanalyst gets to choose plaintext messages
m1, m2, . . . , mi and he is given the corresponding c1 = E1(m1), c2 = E2(m2), . . . , ci =
Ei(mi). He is to infer K or lacking this ability, he is to infer mi+1 from some new
ciphertext ci+1 = Ei+1(mi+1).
In this attack the cryptanalyst confront with the same problem mentioned above. If
the enciphering key were the same for each protocol run it might be possible for the
cryptanalyst to know some information about the shared key. But, unfortunately,
the shared key is refreshed for every protocol run.

• Chosen ciphertext attack: The cryptanalyst gets to choose ciphertext messages
c1, c2, . . . , ci, and he is given the corresponding m1 = D1(c1), m2 = D2(c2), . . . , mi =
Di(ci), provided they exist. He is to infer K or any efficient algotithm for computing
Di or, lacking this ability, he is to infer mi+1 from some new ciphertexts ci+1 =
Ei+1(mi+1).
This attack is similary to chosen plaintext attack with considerting that Di = K,
and Ei = K, where K · K = 1 (mod p − 1). Thus, the same problem confronts
cryptanalyst.
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4.3.4 Security Considerations

In this section, some recommendations are given which should be taken into account
when implementing Diffie-Hellman based on protocols. Most of these recommendation
are based on the attackes discussed before.

• Parameter Authentication: As a general principle, all parameters used in a
cryptographic protocol should be authenticated. For example, suppose the patici-
pants do not authenticate their choice of parameters, an attacker might be able to
fool them into using weak parameters. This type of attack can be very subtle and
can even be missed by top cryptogphers and security experts [17].

• Deleting the secret exponents: It is important to delete the secret exponents,
to guard against memory beign written to disk and prevent unwanted access to
these values.

• Key Freshness and Perfect Forward Secrecy: In many situations the shared
secret key should be changed frequently, like the protocol proposed in this research.
Here are the main reasons why we might want to obtain new shared secret keys.

1. Reduce Exposure The propability that a given key is compromised is lower if
it is not used often.

2. Forward Secrecy If old encryption keys are deleted, encrypted messages can
no longer be decrypted. Hence, a third party cannot mount a ciphertext only
(chosen plaintext attack, and chosen ciphertext) attack.

• Key Independence: As a general principle, we always want to have independent
keys. Precisely, obtaining one secret key should not help an attacker uncover other
keys. This property is called known key security.

• Protocol Math

1. Spot Unconventional Messages

– Make sure that gx, gy and gxy do not equal 1.

– Make sure that gx and gy are less than p− 1 and greater than 1.

– Choose x, y, from the set {2, . . . , p− 2}.
2. Be careful About g’s Order

– The prime factor decomposition of the order of g should not be composed
entirely of small primes.

– The subgroup generated by g should not have small order subgroup. If at
all possible, construct and use a generator that has a large prime order.

• Efficiency Ideally, the generator g should be as small as possible in order to reduce
the cost of modular exponentiation.
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Chapter 5

Conclusions

The results of this research are as following:

1. The generated key is secure against the man in the middle attack.

2. The protocol is based on intractability of Diffie-Hellman problem.

3. It is capable for implicit key authentication, and key confirmation, it provides as-
surance for the recipient whether he or she has computed the valid key.

4. Using random numbers for session keys it is non-deterministic.

5. It is secure against the attacks discussed in this research.

6. If the considerations are maintained it can be protected against the attacks based
on number theory as well.

Diffie-Hellman key exchange algorithm, is based on the assumption that discrete log-
arithms are hard to compute. This intractability hypothesis is also the foundation for
the presumed security of a variety of other public key schemes. While there have been
substantial advances in discrete log algorithms in the last two decades, in general the
discrete log still appears to be hard. Unfortunately no proofs of hardness are available in
this area, so it is necessary to rely on experience and intuition in judging what parameters
to use for cryptosystems.

As we disscussed the proposed protocol is secure and its security is based on Diffie-
Hellman problem and the complexity is the same. This protocol is non-deterministic,
since it uses randomization in the encryption process. The other property of this protocol
is verification that can be done easily by the recipient of the message. This protocol has
been extended from the methods discussed in chapter 3.

One open problem with this protocols is that it is still unknown whether it can be
generalized and extended to be used among 3 or more users. This protocol can be used
as a one-pass protocol as well. In this situation it will not be secure against most of the
attackes considered in chapter 4.
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The protocol proposed in this research possesses many desirable security attributes.
It is hoped that the protocol, or appropriate modifications of it, can, under plausible
assumption, be proven secure in the model of distributed computing.
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